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Feature Extraction

Feature is a distinctive attribute or description of "something” we want

to label or differentiate

» Two principal aspects of image feature extraction

¢ feature detection
v Finding the "features" in a region or image

¢ feature description
v Assigning quantitative attributes to the detected " features"

» Example

¢ Suppose that we use object corners as features

¢ feature detection
v Finding the corners in a region or image

¢ feature description

v Assigning quantitative attributes to the detected corners, such as corner orientation, and

location with respect to other corners

2



Feature Extraction

In general, features should be independent of location, rotation, and

scale

» The word "independent” usually has one of two meanings

¢ Invariant

v A feature descriptor is invariant with respect to a set of transformations if its value remains
unchanged after the application (to the entity being described) of any transformation from the
family

¢ Covariant

v A feature descriptor is covariant with respect to a set of transformations if applying to the entity
any transformation from the set produces the same result in the descriptor

» Three categories
¢ boundary
¢ region
¢ Wwhole image features




Feature Extraction

Basic relationships between pixels

» Neighbors of a pixel

¢ 4-neighbors of a pixel (p), is denoted N,(p)
v A pixel p at coordinates (X, y) has two horizontal and two vertical neighbors with coordinates
(x+1,y), (x-1,y), (X, y+1), (X, y-1)
¢ 8-neighbors of a pixel (p), is denoted Ng(p)
v Four diagonal neighbors of p, denoted Ny(p), have coordinates
(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)
v These neighbors together with the 4-neighbors forms Ng(p)



Feature Extraction

Adjacency

> Let V be the set of intensity values used to define adjacency
¢ In binary image, V={1}
¢ In grayscale image, V typically contains more elements
¢ Three types of adjacency

1. 4-adjacency: two pixels p and g with values from V are 4-adjacent if q is in the set N,(p)
2. 8-adjacency: two pixels p and q with values from V are 8-adjacent if g is in the set Ng(p)

3. m-adjacency (mixed-adjacency): two pixels p and q with values from V are m-adjacent if
(@) qisin N,(p), or
(b) qisin Np(p) and the set N,(p)N N4(q) has no pixels whose values are from V

¢ A digital path (or curve) from pixel p with coordinates (x,, y,) to pixel g with coordinates
(X, Yn) is @ sequence of distinct pixels with coordinates
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Feature Extraction

Connectivity

> Let S represent a subset of pixels in an image

¢ Two pixels p and g are connected if there exists a path between them consisting entirely
of pixels in S

& For any pixel p in S, the set of pixels that are connected to it in S is called a connected
component

¢ If it only has one component, and that component is connected, then S is called a
connected set

Region

1 1 1
> Let R represent a subset of pixels in an image 1 0 1R
¢ R is aregion of the image if R is a connected set 0 1. 0
¢ Two regions, R; and R; are adjacent if their union forms a connected set; 0 ﬂ 1
regions that are not adjacent are said to be disjoint 1 1 1 R,
1 1 1,




Feature Extraction

Boundary following (tracing)
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Feature Extraction

Chain codes are used to represent a boundary by a connected sequence
of straight-line segments of specified length and direction

> Freeman chain codes

¢ A boundary code formed as a sequence of such directional numbers is referred to as a
Freeman chain code
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Feature Extraction

The numerical value of a chain code depends on the starting point

However, the code can be normalized with respect to the starting point
by a straightforward procedure

» The starting point is redefined so that the resulting sequence of numbers
forms an integer of minimum magnitude
¢ First difference with the 4-directional chain code
v 10103322 -> 3133030

¢ First difference of a circular sequence with the 4-directional chain code
v 10103322 -> 33133030

1




Feature Extraction

Example
> 00006066666666444444242222202202 -> 60006260000000600000626000062062
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Feature Extraction

Boundary approximations
» Minimum-perimeter polygons (MPP)

¢ A digital boundary can be approximated with arbitrary accuracy be a polygon

s

—
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Feature Extraction

» Minimum-perimeter polygons (MPP)
¢ A digital boundary can be approximated with arbitrary accuracy be a polygon

12



Feature Extraction

» Minimum-perimeter polygons (MPP)
¢ Observations (W: convex vertices, B: mirrored concave vertices)

1.
2.

The MPP bounded by a simply connected cellular complex is not self-intersecting

Every convex vertex of the MPP is a W vertex, but not every W vertex of a boundary is a vertex
of the MMP

Every mirrored concave vertex of the MPP is a B vertex, but not every B vertex of a boundary is
a vertex of the MPP

All B vertices are on or outside the MPP, and all W vertices are on or inside the MPP

The uppermost-leftmost vertex in a sequence of vertlces contalned in a ceIIuIar complex is
always a W vertex of the MPP [T ifection of travel]

13




Feature Extraction

» Minimum-perimeter polygons (MPP)

¢ How to calculate the orientation of triplets of points
v Using determinant

The sequence a=(3,4), b=(2,3), and c=(3,2) is

% = (ax' ay)' b= (bx' by)' €= (Cx’ Cy) in the counterclockwise direction

Origin
ax ay 1 Yﬂﬂ l 2Hj }I’Ie' JH\I—]. v
A = bx bx 1 l . . ; . J
C, Cp 1 A
[ T, 3 :
%lﬂz}j) E The coordinates of the
: image center are
X, AEEEEEEEEEELl .
>0 if (a,b,c)is a counterclockwise sequence /. Center (Xoy) = (ﬂmr(% ) loor (Y ))
det(4) =< O if the points are collinear
<0 if (a,b,c) is a clockwise sequence
Image fix,y)
M-1

sgn(a, b, c) = det(A) x !



Feature Extraction

» Minimum-perimeter polygons (MPP)

¢ LetV, is the uppermost-leftmost vertex, V, is the current vertex being examined, and V,
is the last MPP vertex; W, and B are two crawler points crawls along W and B vertices

¢ Algorithm
a) V. is on the positive side of the line through the pair of points (V,, W), in which case sgn(V,,
W, Vi) >0

by V, is on the negative side of the line through the pair (V,, W) or is collinear with it, that is
sgn(V,, W¢, Vi) < 0; V, is on the positive side of the line through the pair of points (V|, B¢) or is
collinear with it, thatis sgn(V,, B, Vx) =2 0
c) V| is on the negative side of the line through the pair (V,, B¢), in which case sgn(V,, B, Vi) <0
¢ If condition a) holds, the next MPP vertex is W, and let V,=W; then reinitialize algorithm
by setting W-=B-=V,, and start with the next vertex after the newly changed V,

¢ If condition b) holds, V, becomes a candidate MPP vertex, and set W=V, if V, is convex;
otherwise set B-.=V,. Then continue with the next vertex in the list

¢ If condition c) holds, the next MPP vertex is B. and let V =B, then reinitialize the
algorithm by setting W-=B-=V, and start with the next vertex after the newly changed V, 15




Feature Extraction

» Minimum-perimeter polygons (MPP)
Vo (1,4) WI | [V, (23) B[V, (3,3) WI | [V3(3,2) B | [Vy (41) W] [ [Vs (7,1) W | [Vg (82) B] | [V7(9.2) B] | ...

- 1. Start by letting V| and V, be equal and initializing the other variables W and B

We=B=V,=V,=(1,4)

2. Next vertex is V;=(2,3): sgn(V,W,V,)=0 and sgn(V,,B.V;)=0 -> condition b)
- holds -> Update crawler B. = V, = (2,3)

VL=(1I4)I WC=(1I4)I BC=(213)

3. Next vertex is V,=(3,3): sgn(V,,W,V,)=0 and sgn(V,,B,V,)=0 -> condition b)
holds -> Update crawler W. =V, = (3,3)

VL=(1I4)I WC=(3I3)I BC=(213)

16



Feature Extraction

» Minimum-perimeter polygons (MPP)
Vo (1,4) WI | [V, (23) B[V, (3,3) WI | [V3(3,2) B | [Vy (41) W] [ [Vs (7,1) W | [Vg (82) B] | [V7(9.2) B] | ...

4. Next vertex is V5=(3,2): sgn(V,W,V5)=-2 and sgn(V,B,V5)=0 -> condition b)
holds -> Update crawler B, = V5 = (3,2)

VL=(1/4)/ WC=(3I3)I BC=(312)

' 5. Next vertex is V,=(4,1): sgn(V,,W.V,)=-3 and sgn(V,,B.,V;)=0 -> condition b)
- holds -> Update crawler W. =V, = (4,1)

VL=(1/4)/ WC=(4I 1)/ BC=(312)

6. Next vertex is V:=(7,1): sgn(V_,W,V:)=9 condition a) holds -> Update
VL=WC=(4,1) and reinitialize B = W, = V| = (4,1) -> Next vertex is also V;

We=B=V,= (4,1)

17



Feature Extraction

» Minimum-perimeter polygons (MPP)

18



Feature Extraction

Boundary approximations
> Signatures

¢

¢

It is a 1-D functional representation of a 2-D boundary and may be generated in various
ways
One of the simplest is to plot the distance from the centroid to the boundary as a function

of angle
The basic idea of using signatures is to reduce the boundary representation to a 1-D
function that presumably is easier to describe than the original 2-D boundary

F
V2A
A A
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Feature Extraction

» Signatures

20



Feature Extraction

» Skeletons, medial axis, and distance transforms
¢ Skeletons are related to the shape of a region

¢ It can be computed using the coordinates of points in the entire region, including
boundary

¢ Using one of two principle approaches
1. Using morphological erosion

2. Using medial axis transform (MAT)
v For each point (p) in region (R) with boundary B (B), finding its closest neighbor in B
v If p has more than one such neighbor, it is said to belong to the medial axis of R
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Feature Extraction

» Skeletons, medial axis, and distance transforms

¢ Computing MAT of a region requires calculating the distance from every interior points to
every point on the border of the region, but it is an impractical endeavor in most
applications

& Distance transform

v Finding the distance from the pixels of a region of foreground (white) to their nearest
background (zero) pixels, which constitute the region boundary

v The MAT is equivalent to the ridge of the distance transform and the ridge is the set of local
maxima
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Feature Extraction

> Skeletons, medial axis, and distance transforms

¢ Zhang and Suen et al. [paper]

¢ Algorithm (satisfy one of two steps -> set the pixel to 0)

a) step 1: For each pixel p(x, y), checking following conditions P/ | pP6 | pPS
1. p(x,y) is a foreground pixel (i.e., p1=1)

2. p(X, y) has between 2 and 6 foreground pixels among its neighbors (i.e. 2 < B(p1) < 6, where B(p1) is
the number of foreground pixels among the 8 neighbors))

3. There is exactly one transition from background to foreground among the neighbors of p(x,y) (i.e.,
A(p1)=1, where A(p1l) is the number of 0->1 transitions)

4. At least one of the neighbors p2, p4, p6 is a background pixel (i.e., p2xp4xp6=0)

5. At least one of the neighbors p4, p6, p8 is a background pixel (i.e., p4xp6xp8=0)
b) step 2: For each pixel p(x, y), checking following conditions

1. 1-3 same as stepl

2. At least one of the neighbors p2, p4, p8 is a background pixel (i.e., p2xp4xp8=0)

3. At least one of the neighbors p2, p6, p8 is a background pixel (i.e., p2xp6xp8=0)

23
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Feature Extraction

Basic boundary descriptors

> Length

¢ The number of pixels along a boundary is an approximation of its length
¢ In chain-coded curve

v The number of vertical and horizontal components plus v2 multiplied by the number of
diagonal components gives its exact length

¢ In polygonal curve
v The length is equal to the sum of the lengths of the polygonal segments
De(p,q) = [(x —w)?*+(y — v)?]

> Diameter (is called the major axis or longest chord) Du(p.q) = I — ul + [y — o]
¢ The diameter of a boundary B is defined as diameter(B) = rrl;a}x[D(pi,pj)] Dg(p, q) = max(|x —ul,|ly — v|)

& The minor axis of a boundary is defined as the line perpendicular to the major axis, and
of such length that a box passing through the outer four points of intersection of the
boundary with the two axes completely encloses the boundary

# The box just described is called the basic rectangle or bounding box, and the ratio of the
major to the minor axis is called the eccentricity of the boundary

N| =



Feature Extraction

Basic boundary descriptors
¢ Curvature is a measure of how sharply a curve bends at a particular point

o = YO -y O W
BCICEERIODRE

¢ Tortuosity is a measure of how much a curve deviates from being a straight line

Lactual

Ldirect

A 50 2.3770

50 2.5132

C 50 1.6285




Feature Extraction

Basic boundary descriptors

» Shape numbers
¢ It is a method to describe and recognize shape based on the chain code

¢ Freeman chain coded
v The shape number is defined as the first difference of smallest magnitude
¢ The order n, of a shape number is defined as the number of digits in its representation

Order 8
] | ]
Order 4 Order 6
. L i . |
Chain code: 0 3 2 1 003221 | '
Difference: 3 3 3 3 303303 Chaincode: 0 0 3 3 2 2 1 1 03032211 000
Shape no: 3 3 3 3 033033 Difference: 3 0 3 0 3 0 3 0 33133030 300

03 0 2

(ad
—_—
e
(%]
—_—
(]
[k

3033133 00

[ad
(]

Shape no.: 0

322121

33003

3

0

0

3

3
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Feature Extraction

Basic boundary descriptors
¢ The order n, of a shape number is defined as the number of digits in its representation

S .
‘\-.%

o )
Chaincode: 0 0 003 0032232221211

Difference: 3 0003 1033013003130

Shapeno: 0 003 1 0330130031303




Feature Extraction

Basic boundary descriptors

» Statistical moments
¢ It is an applicable to 1-D renditions of 2-D boundary, such as signature

¢ Histogram
v Letr, for k=0, 1, 2, ..., L-1 denote the intensities of an L-level digital image, f(x, y)
v The unnormalized histogram of f is defined as

h(?"k) = Ny for k=0, 1, 2, -1

where n, is the number of pixels in f with intensity r,, and the subdivisions of the intensity
scale are called histogram bins

v Similarly, the normalized histogram of f is defined as
h(re)  ng

where M and N are the number of image rows and columns

29



Feature Extraction

Basic boundary descriptors

> Statistical moments

¢ Treat the amplitude of g as a discrete random variable z and form an amplitude histogram
p(z), i=0, 1, 2, ..., A-1, so that p(z) is an estimate of the probability of intensity value z
occurring

¢ Then, the nth moment of z about its mean is
A-1 A-1
Un(z) = z(zi —m)'p(z;) m= z zip(2;)
i=0 =0

g(r)

| ® N | ® * e
[ ] L ] » » [ L ] 'Y L ]
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Feature Extraction

Basic region feature descriptors

» Compactness

¢ It is a metric used to describe the shape of a region
2

compactness = % where p is the perimeter of a region and A is area

¢ The compactness of a circle is minimal and the value is 4r

» Circularity
¢ It is used to describe how close a shape is to a circle
, , 41TA
circularity = F

¢ The circularity of a circle is 1

> Differences
¢ Compactness is a measure of how complex the shape's perimeter is relative to its area
¢ Circularity focuses on how similar a shape is to a circle

31



Feature Extraction

Basic region feature descriptors

> Effective diameter
¢ It is a metric used to describe the effective diameter of a region

Area

D, =2 X where p is the perimeter of a region and A is area

T
¢ It can compare sizes of different shapes
¢ Ex: Particle size analysis, biology, and medicine P

> Eccentricity (Tﬁ

¢ It is a metric used to describe the ovality or aspect ratio of a shape (—— ﬂ

.. c Va?-b? b
eccentricity = - =———= /1 — (5)2 a=b
Major axis

» Eigenvectors of the covariance matrix, C

e; A and e, A, are the

K K 1
1 — T 1 1 region eigenvectors and
- — — = __ oo 1 corresponding eigenvalues
C K _ 1 (Zk Z) (Zk Z) Z = K Z Zk eccentTlClty — ’ 1 - (A_) z 7\42 2 7\,1 Centroid of the covariance matrix of

of region the coordinates of the region




Feature Extraction

Basic region feature descriptors
» Compactness, circularity, and eccentricity

Compaciness
Circularity

Eccentricity

10.1701
1.2356
0.0411

42.2442
0.2975
0.0636

15.9836
0.7862
0

13.2308
0.9478
0.8117

X, = compaciness

A

Cady X
Nl X=1%
. 101, ~Teardrop X,

Circle
™\
9 0

X, = circularity ~___— =3

X, = eccentricity
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Feature Extraction

Basic region feature descriptors

» Topological

¢ It is the study of properties of a figure that are unaffected by any deformation, provided
that there is no tearing or joining of the figure

P 75

e Vertex

Face
Z Hole
Edge
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Feature Extraction

Basic region feature descriptors

» Texture
¢ It is an important approach to region description for quantifying its texture content

¢ Intuitively, smoothness, coarseness, and regularity are common texture descriptors while
no formal definition of texture exists

35



Feature Extraction

Basic region feature descriptors

> Texture
¢ Statistical Approaches (estimated based on histogram)

L-1 L-1 L—1
() = ) i =m)"p(z) V()= ) p?(20) e(z) = = ) p (20)log,p(zi)
i=0 =0 =0
Standard . . .
Texture Mean deviati R (normalized) 3rd moment  Uniformity Entropy
eviation
Smooth 82.64 11.79 0.002 —-0.105 0.026 5.434
Coarse 143.56 74.63 0.079 —-0.151 0.005 71.783

Regular 99.72 33.73 0.017 0.750 0.013 6.674
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Feature Extraction

However, measures of texture computed using only histograms carry no
information regarding spatial relationships between pixels, which is

important when describing texture
> Relative position

¢ A co-occurrence matrix (G) with operator Q that defines the position of two pixels relative

to each other
v For an 8-bit image, G will be of size 256x256

Q: one pixel immediately to its right

¢ An approach for reducing computation | : z 3 : Z T j 2
v Quantize the intensities into a few bands, such @ . P I N TS TSTICEERTET
as letting the first 32 intensity levels equal to 1, P I I B e I e i e s e e e

the next 32 equal to 2, and so on T =TT e e e e e e e
41314151511 521011101 1(0[0]O0

8|7|8|7|&]| 2> & 3lololololo]1

718 |G| D|E | 2> 710lololofl1]1]o0]2

s/1|]o0oj010f0)121211

Image f Co-occurrence matrix G




Feature Extraction

» Co-occurrence matrix

¢ n: the total number of pixel pairs =1 =L = J=1
: K K K K K K
¢ Quantify _ 9ij N . 5 . 5
Pij =~ bij = mc:z]zpij o :z(]_mc) zpij
i=1j=1 j=1 i=1 j=1 i=1
Descriptor Explanation Formula
Maximum Measures the strongest response of G. max(p; )
probability The range of values is [0, 1]. !
Correlation A measure of how correlated a pixel is K K [E —m ](_! —m )p
to its neighbor over the entire image. The ZZ : ——
- ; . p i=1 =1 oo r.
range of values is 1 to —1 corresponding ] r e
to perfect positive and perfect negative  0,#0;0.#0
correlations. This measure is not defined
if either standard deviation is zero.
Contrast A measure of intensity contrast between a

pixel and its neighbor over the entire image.

The range of values is 0 (when G is constant)
to (K —1)°.

38



Feature Extraction

K K K K
> Co-occurrence matrix m, = z iz p;  oF= Z(i _ mr)zz P
¢ n: the total number of pixel pairs =1 =L = J=1
: kK K K K K K
¢ Quantify _ Gij 9 _ , , )
Pij =~ bij = mc:z]zpij ¢ :z(]_mc) zpij
i=1j=1 j=1 i=1 j=1 i=1
Uniformity (also A measure of uniformity in the range [0, 1]. K K
called Energy)  Uniformity is 1 for a constant image. E z Pij
i=1j=1
Homogeneity Measures the spatial closeness to the diagonal K K P
of the distribution of elements in G. The range z E ] -
of values is [0, 1], with the maximum being ==t S|
achieved when G is a diagonal matrix.
Entropy Measures the randomness of the elements of K K
G. The entropy is 0 when all p;/’s are 0, and is —Z 2 pijlog; p;

. . . . =1 i=1
maximum when the p;’s are uniformly distrib- o

uted. The maximum value is thus 2log, K.

39




Feature Extraction

» Co-occurrence matrix

40



Feature Extraction

» Co-occurrence matrix

Normalized Maximum
Co-occurrence - Correlation Contrast
. Probability
Matrix
G,/n, 0.00006 —0.0005 10838
G, /n, 0.01500 0.9650 00570
0.06860 0.8798 01356

G, /n,

Uniformity Homogeneity Entropy
0.00002 0.0366 15.75
0.01230 0.0824 06.43
0.00480 0.2048 13.58

41



Feature Extraction

Basic boundary and region feature descriptors

» Principal components analysis (PCA, Hotelling transform, eigenvector

transform, or Karhunen—Loeve transform (KL transform))

iiiii

Spectral band 4

Spectral band 3

Spectral band 2

Spectral band 1

X = (%1, X2, ., Xn)"

vector: m, = E{x} where E{x} i
o« Mean vecto «=E here E s the
o expected value of x
// Covariance vector: C, = E{(x — m,)(x — m,)7T}
- ofoss Spectral band 6 Because x is n dimensional, C, is an nxn matrix,
:l Pt Spectral band 5 and element ¢; of is the variance of x; and

element c; of is the covariance between x; and
%;
If elements x; and x; are uncorrelated, their
covariance is zero -> ¢; = 0 42



Feature Extraction

Basic boundary and region feature descriptors

> PCA

¢ The purpose is to reduce the dimensionality of data by removing redundancy in the data,
while maintaining the main information of the data

Because C, is real and symmetric, finding a set of n orthonormal eigenvectors is always possible

where A is a matrix whose rows are formed from the eigenvectors of C,,

Y= Al = i) arranged in descending values of their eigenvalues
M where the main diagonal are the
m,y, {v} Cy = AlxA Cy [ 0 ... 2 eigenvalues of C,
n

The off-diagonal elements of this covariance matrix are 0, so the elements of the y vectors are
uncorrelated, and C, and C, have the same eigenvalues

43




Feature Extraction

Basic boundary and region feature descriptors

> PCA
¢ By hotelling transform, x can be reconstructed from vy
y = A(x —my)
Ay = A7TA(x — my) . the rows of A are orthonormal vectors .". A-1=AT

ATy = ATA(x —m,) = x —m,
x =ATy + m,
¢ The vector reconstructed by using A, is
£ =Aly + m,

¢ The mean squared error between x and x is

n

n k
_ _ Selecting the k eigenvectors associated with
€ms = Aj—' Aj-— A ]
= = ; the largest eigenvalues

.

=k+1
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Feature Extraction

Basic boundary and region feature descriptors

> How to calculate PCA

1. Data standardization

O Center the data by subtracting the mean, making the mean of the data zero, which eliminates the bias
among different features

2. Calculate the covariance matrix
O Compute the covariance matrix of the data

3. Compute eigenvalues and eigenvectors

4. Select principal components
O Sort the eigenvalues in descending order and select the most significant principal components

5. Project the data

45



Feature Extraction

Basic boundary and region feature descriptors

> How to calculate PCA

¢ Example
1. Data standardization

Data Centered data
2 4 -1.5 -1.75
3 5 -0.5 -0.75
4 6 0.5 0.25
5 8 1.5 2.25

m,=(2+3+4+5)/4 = 3.5
m,=(4+5+6+8)/4 = 5.75

46



Feature Extraction

Basic boundary and region feature descriptors

> How to calculate PCA

¢ Example
2. Covariance matrix

Centered data

-1.5 -1.75
-0.5 -0.75
0.5 0.25
1.5 2.25

m,=(-1.5-0.5+0.5+1.5)/4 = 0
m,=(-1.75-0.75+0.25+2.25)/4 = 0

n
1 , ,
Cov(x,y) = mZ(xi — My)(Y; — my!)
i=1

Covariance matrix

Var(x") Cov(x’,y')]=[1.6667 1.9167

Cov = COU(y’,x,) Var(y’) 1.9167 2.9167

Var(x')=((-1.5)2+(-0.5)2+(0.5)2+(1.5)2)/3=5/3=1.6667
Cov(x', y)=((-1.5)x(-1.75)+(-0.5)x(-0.75)+(0.5)x(0.25) +(1.5)x(2.25))/3=1.9167
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Feature Extraction

Basic boundary and region feature descriptors

> How to calculate PCA

¢ Example | | | oy — [16667 19167
3. Eigenvalues and eigenvectors of covariance matrix V=119167 29167

------- - Eigenvalues () = -=---—"-
det(Cov-AI)=0

1.6667 — A 1.9167
1.9167 29167 — A

© (1.6667-1)x(2.9167-1.)-(1.9167)x(1.9167)=0

L Eigenvectors (v) - —-—-—"- o
(Cov-AI)v=0

1
" For A,=4.3077, v1=[z’j], (Cov-4.3077I)v =0 |
. y .

=0

(1.6667-4.3077)vz+1.9167v, =0

I I
I I
I I
I I
e T | 1.9167v1+(2.91 67-4.3007)vy1 -0 !
! 2641 |
| V. = 1.3779v} :
I I
I I

|
|
|
|
|
|
I Yool 9167

7\41=4-3077, 7\,2=0.2757

0 5874
0 8093
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Feature Extraction

_ . . Y
Basic boundary and region feature descriptors A
> How to calculate PCA S
¢ Example
4. Select the most significant principal components: A,=4.3077 and v! | o
5. Project the data 2 ﬁ@ “ Link

Project = Dataxvl

W 8 & 4 2 0 2 4 & 8 O
‘‘‘‘‘‘

Project data with 30 principal components

IMIII]III



https://leemeng.tw/essence-of-principal-component-analysis.html
https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8-%E7%B5%B1%E8%A8%88%E5%AD%B8%E7%BF%92-%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90-principle-component-analysis-pca-58229cd26e71
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https://leemeng.tw/essence-of-principal-component-analysis.html

Feature Extraction

Basic whole image feature descriptors
> Harris-Stephens corner detector

¢ Basic approach: : Corners are detected by running a small window over an image and the

window is designed to compute intensity changes
¢ Three scenarios:

1. Areas of zero (or small) intensity changes in all directions, which happens when the window is

located in a constant (or nearly constant) region, as in location A

2. Areas of changes in one direction but no (or small) changes in the orthogonal direction, which

this happens when the window spans a boundary between two regions, as in location B

3. Areas of significant changes in all directions, a condition that happens when the window

contains a corner (or isolated points), as in location C

Region 2

A fd b

s

1

_———’—‘C—B;;:m $$$B

Region 1

nEFs



Feature Extraction

» Harris-Stephens corner detector
f is an image and f(s, t) is a patch of the image defined by the values of (s, t)
A patch of the same size, but shifted by (x, y), is given by f(s+Xx, t+y)
The weighted sum of squared difference between the two patches is given by

—C(x,y) =X Y w(s, O)[f(s+t,t+7y)— f(s,t)]? wherew(s,t) is a weighting function

fGs+x,t+y) = f(s,t) +xfi(s,t) + yf,(s,t) by Taylon expansion Y

of  of
> C(x,y) = zz w(s, t)[xf(s,t) + yf, (s, t)]? f o+ 8%, 50 + A7) = f (%o, y0) + 7 Ax i
S 2 S
Clx,y) =[xy|M lyl where M = ZZw(s, t)A and A = ij}y ;yzy

Harris matrix
In general, w has one of two forms:

1) 1 inside in the patch and 0 elsewhere: when computational speed is paramount and the noise level is low

2) w(s,t) = e~ *+t%/20%: when data smoothing is important 52



Feature Extraction

» Harris-Stephens corner detector
¢ As discussed in PCA, the eigenvector of a real, symmetric matrix point in the direction of maximum

¢

data spread, and the corresponding eigenvalues are proportional to the amount of data spread in
the direction of the eigenvectors

The eigenvectors are the major axes of an ellipse fitting the data, and the magnitude of the

eigenvalues are the distances from the center of the ellipse to the points where it intersects the
major axes

Flat 7! Straight
Edge

A,: small A,: large “l
A, small £ T4 A, small .1 1
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Feature Extraction

> Harris-Stephens corner detector

¢ However, instead of using the eigenvalues (which are expensive to compute), the HS detector
utilizes a measure of corner response based on the fact that the trace of a square matrix is equal to
the sum of its eigenvalues, and its determinant is equal to the product of its eigenvalues

a)
b)

R=\A, k(A +2,)>=det(M)-kxtrace(M) where k is a constant
R is large positive values when both eigenvalues are large -> corner
R is large negative values when one eigenvalue is large and the other small -> edge

The absolute of R is small when both eigenvalues are small -> flat

Constant k is determined empirically, the smaller it is, the more likely the detector is to
find corners

A corner at an image location has been detected only if R > T, where T is threshold
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Feature Extraction

» Harris-Stephens corner detector
k=0.04, T=0.01 k=0.1, T=0.01

e
e

k=0.1, T=0.1 k=0.04, T=0.1 k=0.04, T=0.3
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Feature Extraction

» Harris-Stephens corner detector

k=0.249, T=0.01

k=0.04, T=0.01

k=0.04, T=0.15
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eature Extraction

» Harris-Stephens corner detector

57



Feature Extraction

Basic whole image feature descriptors
» Scale-invariant feature transform (SIFT)

¢

¢

It transforms image data into scale-invariant coordinates for extracting invariant features
from an image

SIFT features (called keypoints) are invariant to image scale and rotation, and are robust
across a range of affine distortions, changes in 3-D viewpoint, noise, and changes of
illumination

The input is an image and the out is an n-dimensional feature vector whose elements are
the invariant feature descriptors
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Feature Extraction

» SIFT algorithm

Construct the scale space

Obtain the initial keypoints by local extrema

Improve the accuracy of the location of the keypoints
Compute keypoint orientations

Compute keypoint descriptors

S N
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Feature Extraction

» SIFT algorithm
Construct the scale space

1.

¢

¢

Find image locations that are invariant to scale change by searching for stable features across
all possible scales using a scale function (i.e. scale space)

Scale space is a multi-scale representation suitable for handling image structures at difference
scales in a consistent manner

Scale space represents an image as a one-parameter (scale parameter) family of smoothed
images, with the objective of simulating the loss of detail that would occur as the scale of an
image decreases

L(x,y,0) = G(x,y,0)kf(x,y)
1

—(x?+y*)/20*
2ma2
To

G(x,y,0) =

f(x, y) is successively convolved with Gaussian kernels have standard deviations o, ko, k?c, k3c,
... to generate a "stack" of Gaussian-filtered (smoothed) images
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Feature Extraction

¢ f(x, y) is successively convolved with Gaussian kernels have standard deviations o, ko, k?c, k3c,
.. to generate a "stack" of Gaussian-filtered (smoothed) images

More octaves

’ Koy Scale space is subdivide into octaves, with each
kfr octave corresponding to a doubling of ©

Standard deviations used

4 - = = = =
i k;"z in the Gaussian lowpass Each octave is subdivide into an integer number, s,
- *— 1 kernels of each octave (the

= ko, _ of intervals, so that an interval of 1 consists of two
T IH o, 420, same number of images . . . .
e d with the same powers of kis images, an interval of 2 consists of three images
Octave 2 generated in each octave) because these smoothed images will be used to
— Koy ‘ compute differences of Gaussians
// k:rr, L

P ko, The size of image in next octave is formed by
?/ ffl ) downsampling the previous image, and then
% smoothing it using a kernel with twice the standard

e deviation used in the previous octave

Images smoothed using
Octave 1 Gaussian lowpass kernels 61

Scale



Feature Extraction

¢ f(x, y) is successively convolved with Gaussian kernels have standard deviations o, ko, k?c, k3c,
... to generate a "stack" of Gaussian-filtered (smoothed) images

o, =v2/2=0707 k=+2=1414

ko,
Octave Scale
1 2 3 1 5
ko, ‘k%f2 1 | 0707 1000 1414 2000 2828

2 1.414 2.000 2.828 4.000 5.657

3 2.828 4.000 5.657 8.000 11.314
“ o, =20, =40,

Gitave 1 Octave 2 Octave 3 62

Scale
Scale

Scale




Feature Extraction

» SIFT algorithm

2. Obtain the initial keypoints by local extrema

¢ Using the difference of Gaussians (DoGs) of two adjacent scale-space images in an octave,
convolved with the input image that corresponds to that octave

_ _ A point is select as keypoint if the value is largest or
D ) ) - G » ) k G )y ) ) . . . . .
7,5 = 65,7, 5w (x,y U)]tf 2(x y) smallest than its eight neighbors in the current image and
G(x,y,ko) —G(x,y,0) = (k —1)0°V*G its nine neighbors in the images above and below

-

| = — D(x,y, o)

Octave 1 Sample D(x,y, o) Scale

Corresponding sections of three 63

Scale . )
Gaussian-filtered images, L(x,y, o) contiguous D(x,y, o) images




Feature Extraction

» SIFT algorithm
3. Improve the accuracy of the location of the keypoints

a. IfD(X)=D+ %(VD)Ta?, where VD is the differential of D, is low, then it is rejected (eliminated)

b. [gre(t’g;])z < (ril)z, where r is a threshold and H is the Hessian matrix, is true, then it is
preserved
In function a, the VD is defined as In function b, the Tr(H) and Det(H) are defined as
azD/axz GZD/axay Dxx ny
op |9D/0x ~|a2p/ayox  82D/ay2 |~ |Dyx Dy,
VD = a— = aD/ay
* |ap /oo Tr(H) = Dyy + Dy = a + B

Det(H) = DyxDyy— (Dxu)?= ap

where o and B are the eigenvalues of H with the

largest and smallest magnitude 61




Feature Extraction

» SIFT algorithm

3. Improve the accuracy of the location of the keypoints
¢ IfD(Xx)<0.03andr =10
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Feature Extraction

» SIFT algorithm
4, Compute keypoint orientations
¢ Based on L(x, y), the gradient magnitude M(Xx, y), and orientation angle 8 are computed using
M(x, ¥) = [(L(x+1, y) - L(x-1, y))*+(L(X, y+1) - L(X, y-1))*]"/2
0(x, y)= tan"1[(L(X, y+1) - L(x, y-1))/L(x+1, y) - L(x-1, y))]

Then, a histogram of orientations is formed from the gradient orientations of simple points in a
neighborhood of each keypoint

Each sample added to the histogram is weighed by its gradient magnitude, and by a circular
Gaussian function with a standard deviation 1.5 times the scale of the keypoint
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» SIFT algorithm
4. Compute keypoint orientations
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https://www.itheima.com/news/20210604/113227.html

Feature Extraction

» SIFT algorithm
4. Compute keypoint orientations
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Feature Extraction

» SIFT algorithm
4, Compute keypoint orientations
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Feature Extraction

» SIFT algorithm

5.

Compute keypoint descriptors

¢ Build a descriptor for each keypoint that is both distinctive and invariant to certain variables,
such as lightling and viewpoint. Additionally, the descriptor not only includes the keypoint itself
but also the surrounding pixels that contribute to it

¢ The main idea is to divide the image area around the keypoint into blocks, calculate the

gradient histogram within each block, generate feature vectors, and abstract the image
information

¢ Steps:

1. Taking the feature point as the center, divide its nearby neighborhood into d*d sub-regions (usually
d=4), each sub-region is a square with a side length of 30

2. In order to ensure the rotation invariance of the feature point, the coordinate axis is rotated to the
main direction of the key point with the feature point as the center

3. Calculate the gradient of the pixels in the sub-region, perform Gaussian weighting according to
0=0.5d, and then interpolate to calculate the gradient of each seed point in eight directions
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Feature Extraction

» SIFT algorithm

5. Compute keypoint descriptors

¢ Steps:
1.  Taking the feature point as the center, divide its nearby neighborhood into d*d sub-regions (usually
d=4), each sub-region is a square with a side length of 30

304!.‘ 30”“

!
bs
)
3

..............
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Feature Extraction

» SIFT algorithm

5. Compute keypoint descriptors

¢ Steps:

2. In order to ensure the rotation invariance of the feature point, the coordinate axis is rotated to the
main direction of the key point with the feature point as the center
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Feature Extraction

» SIFT algorithm

5. Compute keypoint descriptors

¢ Steps:

3. Calculate the gradient of the pixels in the sub-region, perform Gaussian weighting according to
0=0.5d, and then interpolate to calculate the gradient of each seed point in eight directions

73


https://www.itheima.com/news/20210604/113227.html

Feature Extraction

» SIFT algorithm
Compute keypoint descriptors

5.
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bins are multiples of 45°)

Keypoint descriptor = 128-dimensional vector
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