
Feature Extraction

Feature Extraction

Feature is a distinctive attribute or description of "something" we want
to label or differentiate

➢ Two principal aspects of image feature extraction

◆ feature detection

✓ Finding the "features" in a region or image

◆ feature description

✓ Assigning quantitative attributes to the detected " features"

➢ Example

◆ Suppose that we use object corners as features

◆ feature detection

✓ Finding the corners in a region or image

◆ feature description

✓ Assigning quantitative attributes to the detected corners, such as corner orientation, and
location with respect to other corners 2

Feature Extraction

In general, features should be independent of location, rotation, and

scale

➢ The word "independent" usually has one of two meanings

◆ Invariant

✓ A feature descriptor is invariant with respect to a set of transformations if its value remains
unchanged after the application (to the entity being described) of any transformation from the
family

◆ Covariant

✓ A feature descriptor is covariant with respect to a set of transformations if applying to the entity
any transformation from the set produces the same result in the descriptor

➢ Three categories

◆ boundary

◆ region

◆ whole image features 3

Feature Extraction

Basic relationships between pixels

➢ Neighbors of a pixel

◆ 4-neighbors of a pixel (p), is denoted N4(p)

✓ A pixel p at coordinates (x, y) has two horizontal and two vertical neighbors with coordinates
(x+1, y), (x-1, y), (x, y+1), (x, y-1)

◆ 8-neighbors of a pixel (p), is denoted N8(p)

✓ Four diagonal neighbors of p, denoted ND(p), have coordinates

(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)

✓ These neighbors together with the 4-neighbors forms N8(p)

4

Feature Extraction

Adjacency

➢ Let V be the set of intensity values used to define adjacency

◆ In binary image, V={1}

◆ In grayscale image, V typically contains more elements

◆ Three types of adjacency

1. 4-adjacency: two pixels p and q with values from V are 4-adjacent if q is in the set N4(p)

2. 8-adjacency: two pixels p and q with values from V are 8-adjacent if q is in the set N8(p)

3. m-adjacency (mixed-adjacency): two pixels p and q with values from V are m-adjacent if

(a) q is in N4(p), or

(b) q is in ND(p) and the set N4(p)∩ N4(q) has no pixels whose values are from V

◆ A digital path (or curve) from pixel p with coordinates (x0, y0) to pixel q with coordinates
(xn, yn) is a sequence of distinct pixels with coordinates

5

(x0, y0), (x1, y1), …, (xn, yn)

Feature Extraction

Connectivity

➢ Let S represent a subset of pixels in an image

◆ Two pixels p and q are connected if there exists a path between them consisting entirely
of pixels in S

◆ For any pixel p in S, the set of pixels that are connected to it in S is called a connected
component

◆ If it only has one component, and that component is connected, then S is called a
connected set

6

Region

➢ Let R represent a subset of pixels in an image

◆ R is a region of the image if R is a connected set

◆ Two regions, Ri and Rj are adjacent if their union forms a connected set;
regions that are not adjacent are said to be disjoint

Feature Extraction

Boundary following (tracing)

7

Feature Extraction

Chain codes are used to represent a boundary by a connected sequence
of straight-line segments of specified length and direction

➢ Freeman chain codes

◆ A boundary code formed as a sequence of such directional numbers is referred to as a
Freeman chain code

✓ 0766…12

8

Feature Extraction

The numerical value of a chain code depends on the starting point

However, the code can be normalized with respect to the starting point
by a straightforward procedure

➢ The starting point is redefined so that the resulting sequence of numbers
forms an integer of minimum magnitude

◆ First difference with the 4-directional chain code

✓ 10103322 -> 3133030

◆ First difference of a circular sequence with the 4-directional chain code

✓ 10103322 -> 33133030

9

Feature Extraction

Example
➢ 00006066666666444444242222202202 -> 60006260000000600000626000062062

10

Feature Extraction

11

Boundary approximations

➢ Minimum-perimeter polygons (MPP)

◆ A digital boundary can be approximated with arbitrary accuracy be a polygon

Feature Extraction

➢ Minimum-perimeter polygons (MPP)

◆ A digital boundary can be approximated with arbitrary accuracy be a polygon

12

Feature Extraction

➢ Minimum-perimeter polygons (MPP)

◆ Observations (W: convex vertices, B: mirrored concave vertices)

1. The MPP bounded by a simply connected cellular complex is not self-intersecting

2. Every convex vertex of the MPP is a W vertex, but not every W vertex of a boundary is a vertex
of the MMP

3. Every mirrored concave vertex of the MPP is a B vertex, but not every B vertex of a boundary is
a vertex of the MPP

4. All B vertices are on or outside the MPP, and all W vertices are on or inside the MPP

5. The uppermost-leftmost vertex in a sequence of vertices contained in a cellular complex is
always a W vertex of the MPP

13

W

B

Feature Extraction

➢ Minimum-perimeter polygons (MPP)

◆ How to calculate the orientation of triplets of points

✓ Using determinant

14

𝐴 =

𝑎𝑥 𝑎𝑦 1

𝑏𝑥 𝑏𝑥 1
𝑐𝑥 𝑐𝑥 1

det 𝐴 = ൞

> 0 𝑖𝑓 𝑎, 𝑏, 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑟𝑒 𝑐𝑜𝑙𝑙𝑖𝑛𝑒𝑎𝑟

< 0 𝑖𝑓 𝑎, 𝑏, 𝑐 𝑖𝑠 𝑎 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑎 = 𝑎𝑥, 𝑎𝑦 , 𝑏 = 𝑏𝑥 , 𝑏𝑦 , 𝑐 = 𝑐𝑥, 𝑐𝑦
The sequence a=(3,4), b=(2,3), and c=(3,2) is
in the counterclockwise direction

sgn(𝑎, 𝑏, 𝑐) ≡ det(𝐴)

Feature Extraction

➢ Minimum-perimeter polygons (MPP)

◆ Let V0 is the uppermost-leftmost vertex, Vk is the current vertex being examined, and VL

is the last MPP vertex; WC and BC are two crawler points crawls along W and B vertices

◆ Algorithm

a) Vk is on the positive side of the line through the pair of points (VL, WC), in which case sgn(VL,
WC, VK) > 0

b) Vk is on the negative side of the line through the pair (VL, WC) or is collinear with it, that is
sgn(VL, WC, VK) ≤ 0; Vk is on the positive side of the line through the pair of points (VL, BC) or is
collinear with it, that is sgn(VL, BC, VK) ≥ 0

c) Vk is on the negative side of the line through the pair (VL, BC), in which case sgn(VL, BC, VK) < 0

◆ If condition a) holds, the next MPP vertex is WC, and let VL=WC; then reinitialize algorithm
by setting WC=BC=VL, and start with the next vertex after the newly changed VL

◆ If condition b) holds, Vk becomes a candidate MPP vertex, and set WC=Vk if Vk is convex;
otherwise set BC=Vk. Then continue with the next vertex in the list

◆ If condition c) holds, the next MPP vertex is BC and let VL=BC; then reinitialize the
algorithm by setting WC=BC=VL and start with the next vertex after the newly changed VL

15

Feature Extraction

➢ Minimum-perimeter polygons (MPP)

16

[V0 (1,4) W] | [V1 (2,3) B | [V2 (3,3) W] | [V3 (3,2) B] | [V4 (4,1) W] | [V5 (7,1) W] | [V6 (8,2) B] | [V7 (9,2) B] | …

1. Start by letting VL and V0 be equal and initializing the other variables WC and BC

WC=BC=VL=V0=(1,4)

2. Next vertex is V1=(2,3): sgn(VL,WC,V1)=0 and sgn(VL,BC,V1)=0 -> condition b)
holds -> Update crawler BC = V1 = (2,3)

VL=(1,4), WC=(1,4), BC=(2,3)

3. Next vertex is V2=(3,3): sgn(VL,WC,V2)=0 and sgn(VL,BC,V2)=0 -> condition b)
holds -> Update crawler WC = V2 = (3,3)

VL=(1,4), WC=(3,3), BC=(2,3)

Feature Extraction

➢ Minimum-perimeter polygons (MPP)

17

4. Next vertex is V3=(3,2): sgn(VL,WC,V3)=-2 and sgn(VL,BC,V3)=0 -> condition b)
holds -> Update crawler BC = V3 = (3,2)

5. Next vertex is V4=(4,1): sgn(VL,WC,V4)=-3 and sgn(VL,BC,V1)=0 -> condition b)
holds -> Update crawler WC = V4 = (4,1)

VL=(1,4), WC=(4,1), BC=(3,2)

6. Next vertex is V5=(7,1): sgn(VL,WC,V5)=9 condition a) holds -> Update
VL=WC=(4,1) and reinitialize BC = WC = VL = (4,1) -> Next vertex is also V5

VL=(1,4), WC=(3,3), BC=(3,2)

[V0 (1,4) W] | [V1 (2,3) B | [V2 (3,3) W] | [V3 (3,2) B] | [V4 (4,1) W] | [V5 (7,1) W] | [V6 (8,2) B] | [V7 (9,2) B] | …

WC=BC=VL= (4,1)

Feature Extraction

➢ Minimum-perimeter polygons (MPP)

18

Feature Extraction

19

Boundary approximations

➢ Signatures

◆ It is a 1-D functional representation of a 2-D boundary and may be generated in various
ways

◆ One of the simplest is to plot the distance from the centroid to the boundary as a function
of angle

◆ The basic idea of using signatures is to reduce the boundary representation to a 1-D
function that presumably is easier to describe than the original 2-D boundary

Feature Extraction

20

➢ Signatures

Feature Extraction

21

➢ Skeletons, medial axis, and distance transforms

◆ Skeletons are related to the shape of a region

◆ It can be computed using the coordinates of points in the entire region, including
boundary

◆ Using one of two principle approaches

1. Using morphological erosion

2. Using medial axis transform (MAT)

✓ For each point (p) in region (R) with boundary B (B), finding its closest neighbor in B

✓ If p has more than one such neighbor, it is said to belong to the medial axis of R

Feature Extraction

22

➢ Skeletons, medial axis, and distance transforms

◆ Computing MAT of a region requires calculating the distance from every interior points to
every point on the border of the region, but it is an impractical endeavor in most
applications

◆ Distance transform

✓ Finding the distance from the pixels of a region of foreground (white) to their nearest
background (zero) pixels, which constitute the region boundary

✓ The MAT is equivalent to the ridge of the distance transform and the ridge is the set of local
maxima

Feature Extraction

23

➢ Skeletons, medial axis, and distance transforms

◆ Zhang and Suen et al. [paper]

◆ Algorithm (satisfy one of two steps -> set the pixel to 0)

a) step 1: For each pixel p(x, y), checking following conditions

1. p(x, y) is a foreground pixel (i.e., p1=1)

2. p(x, y) has between 2 and 6 foreground pixels among its neighbors (i.e. 2 ≤ B(p1) ≤ 6, where B(p1) is
the number of foreground pixels among the 8 neighbors))

3. There is exactly one transition from background to foreground among the neighbors of p(𝑥,𝑦) (i.e.,

A(p1)=1, where A(p1) is the number of 0->1 transitions)

4. At least one of the neighbors p2, p4, p6 is a background pixel (i.e., p2×p4×p6=0)

5. At least one of the neighbors p4, p6, p8 is a background pixel (i.e., p4×p6×p8=0)

b) step 2: For each pixel p(x, y), checking following conditions

1. 1-3 same as step1

2. At least one of the neighbors p2, p4, p8 is a background pixel (i.e., p2×p4×p8=0)

3. At least one of the neighbors p2, p6, p8 is a background pixel (i.e., p2×p6×p8=0)

p9 p2 p3

p8 p1 p4

p7 p6 p5

https://dl.acm.org/doi/pdf/10.1145/357994.358023
https://dl.acm.org/doi/pdf/10.1145/357994.358023

Feature Extraction

24

➢ Skeletons, medial axis, and distance transforms

Feature Extraction

25

Basic boundary descriptors

➢ Length

◆ The number of pixels along a boundary is an approximation of its length

◆ In chain-coded curve

✓ The number of vertical and horizontal components plus 2 multiplied by the number of
diagonal components gives its exact length

◆ In polygonal curve

✓ The length is equal to the sum of the lengths of the polygonal segments

➢ Diameter (is called the major axis or longest chord)

◆ The diameter of a boundary B is defined as

◆ The minor axis of a boundary is defined as the line perpendicular to the major axis, and
of such length that a box passing through the outer four points of intersection of the
boundary with the two axes completely encloses the boundary

◆ The box just described is called the basic rectangle or bounding box, and the ratio of the
major to the minor axis is called the eccentricity of the boundary

𝐷𝑒(𝑝, 𝑞) = [(𝑥 − 𝑢)2+(𝑦 − 𝑣)2]
1
2

𝐷4(𝑝, 𝑞) = |𝑥 − 𝑢| + |𝑦 − 𝑣|

𝐷8(𝑝, 𝑞) = max(𝑥 − 𝑢 , 𝑦 − 𝑣)𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐵 = max
𝑖,𝑗

[𝐷(𝑝𝑖 , 𝑝𝑗)]

Feature Extraction

26

Basic boundary descriptors
◆ Curvature is a measure of how sharply a curve bends at a particular point

𝜏 =
𝐿𝑎𝑐𝑡𝑢𝑎𝑙
𝐿𝑑𝑖𝑟𝑒𝑐𝑡

◆ Tortuosity is a measure of how much a curve deviates from being a straight line

𝜅 𝑡 =
𝑥′ 𝑡 𝑦′′ 𝑡 − 𝑦′ 𝑡 𝑥′′(𝑡)

(𝑥′(𝑡)2 + 𝑦′(𝑡)2)3/2

Feature Extraction

27

Basic boundary descriptors

➢ Shape numbers

◆ It is a method to describe and recognize shape based on the chain code

◆ Freeman chain coded

✓ The shape number is defined as the first difference of smallest magnitude

◆ The order n, of a shape number is defined as the number of digits in its representation

Feature Extraction

28

Basic boundary descriptors
◆ The order n, of a shape number is defined as the number of digits in its representation

Feature Extraction

29

Basic boundary descriptors

➢ Statistical moments

◆ It is an applicable to 1-D renditions of 2-D boundary, such as signature

◆ Histogram

✓ Let rk, for k=0, 1, 2, …, L-1 denote the intensities of an L-level digital image, f(x, y)

✓ The unnormalized histogram of f is defined as

✓ Similarly, the normalized histogram of f is defined as

ℎ 𝑟𝑘 = 𝑛𝑘 for k=0, 1, 2, …L-1

where nk is the number of pixels in f with intensity rk, and the subdivisions of the intensity
scale are called histogram bins

𝑝 𝑟𝑘 =
ℎ 𝑟𝑘
𝑀𝑁

=
𝑛𝑘
𝑀𝑁

where M and N are the number of image rows and columns

Feature Extraction

30

Basic boundary descriptors

➢ Statistical moments

◆ Treat the amplitude of g as a discrete random variable z and form an amplitude histogram
p(zi), i=0, 1, 2, …, A-1, so that p(zi) is an estimate of the probability of intensity value zi

occurring

◆ Then, the nth moment of z about its mean is

𝜇𝑛 𝑧 = ෍

𝑖=0

𝐴−1

𝑧𝑖 −𝑚 𝑛𝑝(𝑧𝑖) 𝑚 = ෍

𝑖=0

𝐴−1

𝑧𝑖𝑝(𝑧𝑖)

Feature Extraction

31

Basic region feature descriptors

➢ Compactness

◆ It is a metric used to describe the shape of a region

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑝2

𝐴
where p is the perimeter of a region and A is area

◆ The compactness of a circle is minimal and the value is 4

➢ Circularity

◆ It is used to describe how close a shape is to a circle

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4𝜋𝐴

𝑝2

◆ The circularity of a circle is 1

➢ Differences

◆ Compactness is a measure of how complex the shape's perimeter is relative to its area

◆ Circularity focuses on how similar a shape is to a circle

Feature Extraction

32

Basic region feature descriptors

➢ Effective diameter

◆ It is a metric used to describe the effective diameter of a region

𝐷𝑒 = 2 ×
𝐴𝑟𝑒𝑎

𝜋
where p is the perimeter of a region and A is area

◆ It can compare sizes of different shapes

◆ Ex: Particle size analysis, biology, and medicine

➢ Eccentricity

◆ It is a metric used to describe the ovality or aspect ratio of a shape

𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =
𝑐

𝑎
=

𝑎2−𝑏2

𝑎
= 1 − (

𝑏

𝑎
)2 a ≥ b

➢ Eigenvectors of the covariance matrix, C

𝐶 =
1

𝐾 − 1
෍

𝑘=1

𝐾

(𝑧𝑘 − ҧ𝑧)(𝑧𝑘 − ҧ𝑧)𝑇 ҧ𝑧 =
1

𝐾
෍

𝑘=1

𝐾

𝑧𝑘 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 1 − (
𝜆1

𝜆2
)2 2 ≥ 1

Feature Extraction

33

Basic region feature descriptors

➢ Compactness, circularity, and eccentricity

Feature Extraction

34

Basic region feature descriptors

➢ Topological

◆ It is the study of properties of a figure that are unaffected by any deformation, provided
that there is no tearing or joining of the figure

Feature Extraction

35

Basic region feature descriptors

➢ Texture

◆ It is an important approach to region description for quantifying its texture content

◆ Intuitively, smoothness, coarseness, and regularity are common texture descriptors while
no formal definition of texture exists

Feature Extraction

36

Basic region feature descriptors

➢ Texture

◆ Statistical Approaches (estimated based on histogram)

𝜇𝑛 𝑧 = ෍

𝑖=0

𝐿−1

𝑧𝑖 −𝑚 𝑛𝑝(𝑧𝑖) U(𝑧) = ෍

𝑖=0

𝐿−1

𝑝2 (𝑧𝑖) e 𝑧 = −෍

𝑖=0

𝐿−1

𝑝 (𝑧𝑖)𝑙𝑜𝑔2𝑝(𝑧𝑖)

Feature Extraction

37

However, measures of texture computed using only histograms carry no
information regarding spatial relationships between pixels, which is
important when describing texture

➢ Relative position

◆ A co-occurrence matrix (G) with operator Q that defines the position of two pixels relative
to each other

✓ For an 8-bit image, G will be of size 256256

◆ An approach for reducing computation

✓ Quantize the intensities into a few bands, such
as letting the first 32 intensity levels equal to 1,
the next 32 equal to 2, and so on

Q: one pixel immediately to its right

Feature Extraction

38

➢ Co-occurrence matrix

◆ n: the total number of pixel pairs

◆ Quantify
𝑝𝑖𝑗 =

𝑔𝑖𝑗

𝑛
෍

𝑖=1

𝐾

෍

𝑗=1

𝐾

𝑝𝑖𝑗 = 1

𝑚𝑟 =෍

𝑖=1

𝐾

𝑖෍

𝑗=1

𝐾

𝑝𝑖𝑗

𝑚𝑐 =෍

𝑗=1

𝐾

𝑗෍

𝑖=1

𝐾

𝑝𝑖𝑗

𝜎𝑟
2 =෍

𝑖=1

𝐾

(𝑖 − 𝑚𝑟)
2෍

𝑗=1

𝐾

𝑝𝑖𝑗

𝜎𝑐
2 =෍

𝑗=1

𝐾

(𝑗 − 𝑚𝑐)
2෍

𝑖=1

𝐾

𝑝𝑖𝑗

Feature Extraction

39

➢ Co-occurrence matrix

◆ n: the total number of pixel pairs

◆ Quantify
𝑝𝑖𝑗 =

𝑔𝑖𝑗

𝑛
෍

𝑖=1

𝐾

෍

𝑗=1

𝐾

𝑝𝑖𝑗 = 1

𝑚𝑟 =෍

𝑖=1

𝐾

𝑖෍

𝑗=1

𝐾

𝑝𝑖𝑗

𝑚𝑐 =෍

𝑗=1

𝐾

𝑗෍

𝑖=1

𝐾

𝑝𝑖𝑗

𝜎𝑟
2 =෍

𝑖=1

𝐾

(𝑖 − 𝑚𝑟)
2෍

𝑗=1

𝐾

𝑝𝑖𝑗

𝜎𝑐
2 =෍

𝑗=1

𝐾

(𝑗 − 𝑚𝑐)
2෍

𝑖=1

𝐾

𝑝𝑖𝑗

Feature Extraction

40

➢ Co-occurrence matrix

Feature Extraction

41

➢ Co-occurrence matrix

Feature Extraction

42

Basic boundary and region feature descriptors

➢ Principal components analysis (PCA, Hotelling transform, eigenvector
transform, or Karhunen–Loève transform (KL transform))

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇

Mean vector: 𝑚𝑥 = 𝐸 𝑥 where E{x} is the
expected value of x

Covariance vector: 𝐶𝑥 = 𝐸 (𝑥 − 𝑚𝑥)(𝑥 − 𝑚𝑥)
𝑇

Because x is n dimensional, Cx is an nn matrix,
and element cii of is the variance of xi and
element cij of is the covariance between xi and
xj

If elements xi and xj are uncorrelated, their
covariance is zero -> cij = 0

Feature Extraction

43

Basic boundary and region feature descriptors

➢ PCA

◆ The purpose is to reduce the dimensionality of data by removing redundancy in the data,
while maintaining the main information of the data

𝑦 = 𝐴(𝑥 − 𝑚𝑥)
where A is a matrix whose rows are formed from the eigenvectors of Cx,
arranged in descending values of their eigenvalues

𝑚𝑦 = 𝐸 𝑦 = 0 𝐶𝑦 = 𝐴𝐶𝑥𝐴
𝑇 𝐶𝑦 =

𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

where the main diagonal are the
eigenvalues of Cx

Because Cx is real and symmetric, finding a set of n orthonormal eigenvectors is always possible

The off-diagonal elements of this covariance matrix are 0, so the elements of the y vectors are
uncorrelated, and Cx and Cy have the same eigenvalues

Feature Extraction

44

Basic boundary and region feature descriptors

➢ PCA

◆ By hotelling transform, x can be reconstructed from y

𝑦 = 𝐴(𝑥 − 𝑚𝑥)

𝐴−1𝑦 = 𝐴−1𝐴(𝑥 − 𝑚𝑥) ∵ the rows of A are orthonormal vectors ∴ A-1=AT

𝐴𝑇𝑦 = 𝐴𝑇𝐴 𝑥 −𝑚𝑥 = 𝑥 −𝑚𝑥

𝑥 = 𝐴𝑇𝑦 +𝑚𝑥

◆ The vector reconstructed by using Ak is

ො𝑥 = 𝐴𝑘
𝑇𝑦 + 𝑚𝑥

◆ The mean squared error between 𝑥 and ො𝑥 is

𝑒𝑚𝑠 =෍

𝑗=1

𝑛

𝜆𝑗 −෍

𝑗=1

𝑘

𝜆𝑗 = ෍

𝑗=𝑘+1

𝑛

𝜆𝑗
Selecting the k eigenvectors associated with
the largest eigenvalues

Feature Extraction

45

Basic boundary and region feature descriptors

➢ How to calculate PCA

1. Data standardization
 Center the data by subtracting the mean, making the mean of the data zero, which eliminates the bias

among different features

2. Calculate the covariance matrix
 Compute the covariance matrix of the data

3. Compute eigenvalues and eigenvectors

4. Select principal components
 Sort the eigenvalues in descending order and select the most significant principal components

5. Project the data

Feature Extraction

46

Basic boundary and region feature descriptors

➢ How to calculate PCA

◆ Example

1. Data standardization

x y

2 4

3 5

4 6

5 8

Data

x y

-1.5 -1.75

-0.5 -0.75

0.5 0.25

1.5 2.25

Centered data

mx=(2+3+4+5)/4 = 3.5

my=(4+5+6+8)/4 = 5.75

Feature Extraction

47

Basic boundary and region feature descriptors

➢ How to calculate PCA

◆ Example

2. Covariance matrix

x' y'

-1.5 -1.75

-0.5 -0.75

0.5 0.25

1.5 2.25

Centered data

mx'=(-1.5-0.5+0.5+1.5)/4 = 0

my'=(-1.75-0.75+0.25+2.25)/4 = 0

𝐶𝑜𝑣 𝑥, 𝑦 =
1

𝑛 − 1
෍

𝑖=1

𝑛

(𝑥𝑖
′ −𝑚𝑥′)(𝑦𝑖

′ −𝑚𝑦′)

𝐶𝑜𝑣 =
𝑉𝑎𝑟(𝑥′) 𝐶𝑜𝑣(𝑥′, 𝑦′)

𝐶𝑜𝑣(𝑦′, 𝑥′) 𝑉𝑎𝑟(𝑦′)
=

1.6667 1.9167
1.9167 2.9167

Var(x')=((-1.5)2+(-0.5)2+(0.5)2+(1.5)2)/3=5/3=1.6667

Cov(x', y')=((-1.5)(-1.75)+(-0.5)(-0.75)+(0.5)(0.25) +(1.5)(2.25))/3=1.9167

Covariance matrix

Feature Extraction

48

Basic boundary and region feature descriptors

➢ How to calculate PCA

◆ Example

3. Eigenvalues and eigenvectors of covariance matrix

det(Cov-I)=0

1.6667 − 𝜆 1.9167
1.9167 2.9167 − 𝜆

= 0

(1.6667-)(2.9167-)-(1.9167)(1.9167)=0

(-4.3077)(-0.2757)=0

1=4.3077, 2=0.2757

Eigenvalues ()

(Cov-I)=0

(1.6667-4.3077)𝑣𝑥
1+1.9167𝑣𝑦

1=0

1.9167𝑣𝑥
1+(2.9167-4.3007)𝑣𝑦

1=0

𝑣𝑦
1 =

2.641

1.9167
𝑣𝑥
1 = 1.3779𝑣𝑥

1

Eigenvectors ()

For 1=4.3077, 1=[
𝑣𝑥
1

𝑣𝑦
1], (Cov-4.3077I)1 =0

𝐶𝑜𝑣 =
1.6667 1.9167
1.9167 2.9167

1=
𝑣𝑥
1

𝑣𝑦
1 =

0.5874
0.8093

Feature Extraction

49

Basic boundary and region feature descriptors

➢ How to calculate PCA

◆ Example

4. Select the most significant principal components: 1=4.3077 and 1

5. Project the data
Project = Data1

Link

Data

Project data with 30 principal components

Link

https://leemeng.tw/essence-of-principal-component-analysis.html
https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8-%E7%B5%B1%E8%A8%88%E5%AD%B8%E7%BF%92-%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90-principle-component-analysis-pca-58229cd26e71

Feature Extraction

50
Link

Reconstruct with 108 principal components

https://leemeng.tw/essence-of-principal-component-analysis.html

Feature Extraction

51

Basic whole image feature descriptors

➢ Harris-Stephens corner detector

◆ Basic approach: : Corners are detected by running a small window over an image and the
window is designed to compute intensity changes

◆ Three scenarios:

1. Areas of zero (or small) intensity changes in all directions, which happens when the window is
located in a constant (or nearly constant) region, as in location A

2. Areas of changes in one direction but no (or small) changes in the orthogonal direction, which
this happens when the window spans a boundary between two regions, as in location B

3. Areas of significant changes in all directions, a condition that happens when the window
contains a corner (or isolated points), as in location C

Feature Extraction

52

➢ Harris-Stephens corner detector

f is an image and f(s, t) is a patch of the image defined by the values of (s, t)

A patch of the same size, but shifted by (x, y), is given by f(s+x, t+y)

The weighted sum of squared difference between the two patches is given by

𝐶 𝑥, 𝑦 = σ𝑠σ𝑡𝜔(𝑠, 𝑡)[𝑓 𝑠 + 𝑡, 𝑡 + 𝑦 − 𝑓(𝑠, 𝑡)]2 𝑤ℎ𝑒𝑟𝑒 𝑤 𝑠, 𝑡 𝑖𝑠 𝑎 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑓 𝑠 + 𝑥, 𝑡 + 𝑦 ≈ 𝑓 𝑠, 𝑡 + 𝑥𝑓𝑥 𝑠, 𝑡 + 𝑦𝑓𝑦 𝑠, 𝑡 𝑏𝑦 𝑇𝑎𝑦𝑙𝑜𝑛 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛

𝑓(𝑥0 + ∆𝑥, 𝑦0 + ∆𝑦) = 𝑓 𝑥0, 𝑦0 +
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑓

𝜕𝑦
∆𝑦

𝐶 𝑥, 𝑦 =෍

𝑠

෍

𝑡

𝜔(𝑠, 𝑡)[𝑥𝑓𝑥 𝑠, 𝑡 + 𝑦𝑓𝑦 𝑠, 𝑡]2

𝐶 𝑥, 𝑦 = 𝑥 𝑦 𝑀
𝑥
𝑦 𝑤ℎ𝑒𝑟𝑒 𝑀 =෍

𝑠

෍

𝑡

𝜔 𝑠, 𝑡 𝐴 𝑎𝑛𝑑 𝐴 =
𝑓𝑥
2 𝑓𝑥𝑓𝑦

𝑓𝑥𝑓𝑦 𝑓𝑦
2

Harris matrix

In general, 𝜔 has one of two forms:

1) 1 inside in the patch and 0 elsewhere: when computational speed is paramount and the noise level is low

2) 𝜔 𝑠, 𝑡 = 𝑒 Τ−(𝑠2+𝑡2) 2𝜎2: when data smoothing is important

Feature Extraction

53

➢ Harris-Stephens corner detector
◆ As discussed in PCA, the eigenvector of a real, symmetric matrix point in the direction of maximum

data spread, and the corresponding eigenvalues are proportional to the amount of data spread in
the direction of the eigenvectors

◆ The eigenvectors are the major axes of an ellipse fitting the data, and the magnitude of the
eigenvalues are the distances from the center of the ellipse to the points where it intersects the
major axes

Feature Extraction

54

➢ Harris-Stephens corner detector
◆ However, instead of using the eigenvalues (which are expensive to compute), the HS detector

utilizes a measure of corner response based on the fact that the trace of a square matrix is equal to
the sum of its eigenvalues, and its determinant is equal to the product of its eigenvalues

R=xy-k(x+y)
2=det(M)-ktrace2(M) where k is a constant

a) R is large positive values when both eigenvalues are large -> corner

b) R is large negative values when one eigenvalue is large and the other small -> edge

c) The absolute of R is small when both eigenvalues are small -> flat

 Constant k is determined empirically, the smaller it is, the more likely the detector is to
find corners

 A corner at an image location has been detected only if R > T, where T is threshold

Feature Extraction

55

➢ Harris-Stephens corner detector
k=0.04, T=0.01 k=0.1, T=0.01

k=0.1, T=0.1 k=0.04, T=0.1 k=0.04, T=0.3

Feature Extraction

56

➢ Harris-Stephens corner detector k=0.04, T=0.01

k=0.249, T=0.01 k=0.04, T=0.15

Feature Extraction

57

➢ Harris-Stephens corner detector

Feature Extraction

58

Basic whole image feature descriptors

➢ Scale-invariant feature transform (SIFT)

◆ It transforms image data into scale-invariant coordinates for extracting invariant features
from an image

◆ SIFT features (called keypoints) are invariant to image scale and rotation, and are robust
across a range of affine distortions, changes in 3-D viewpoint, noise, and changes of
illumination

◆ The input is an image and the out is an n-dimensional feature vector whose elements are
the invariant feature descriptors

Feature Extraction

59

➢ SIFT algorithm

1. Construct the scale space

2. Obtain the initial keypoints by local extrema

3. Improve the accuracy of the location of the keypoints

4. Compute keypoint orientations

5. Compute keypoint descriptors

Feature Extraction

60

➢ SIFT algorithm

1. Construct the scale space

◆ Find image locations that are invariant to scale change by searching for stable features across
all possible scales using a scale function (i.e. scale space)

◆ Scale space is a multi-scale representation suitable for handling image structures at difference
scales in a consistent manner

◆ Scale space represents an image as a one-parameter (scale parameter) family of smoothed
images, with the objective of simulating the loss of detail that would occur as the scale of an
image decreases

𝐿 𝑥, 𝑦, 𝜎 = 𝐺 𝑥, 𝑦, 𝜎 𝑓(𝑥, 𝑦)

𝐺 𝑥, 𝑦, 𝜎 =
1

2𝜋𝜎2
𝑒 Τ−(𝑥2+𝑦2) 2𝜎2

◆ f(x, y) is successively convolved with Gaussian kernels have standard deviations , k, k2, k3,
… to generate a "stack" of Gaussian-filtered (smoothed) images

Feature Extraction

61

◆ f(x, y) is successively convolved with Gaussian kernels have standard deviations , k, k2, k3,
… to generate a "stack" of Gaussian-filtered (smoothed) images

Scale space is subdivide into octaves, with each
octave corresponding to a doubling of 

Each octave is subdivide into an integer number, s,
of intervals, so that an interval of 1 consists of two
images, an interval of 2 consists of three images
because these smoothed images will be used to
compute differences of Gaussians

The size of image in next octave is formed by
downsampling the previous image, and then
smoothing it using a kernel with twice the standard
deviation used in the previous octave

Feature Extraction

62

◆ f(x, y) is successively convolved with Gaussian kernels have standard deviations , k, k2, k3,
… to generate a "stack" of Gaussian-filtered (smoothed) images

𝜎1 = Τ2 2 = 0.707 𝑘 = 2 = 1.414

Feature Extraction

63

➢ SIFT algorithm

2. Obtain the initial keypoints by local extrema

◆ Using the difference of Gaussians (DoGs) of two adjacent scale-space images in an octave,
convolved with the input image that corresponds to that octave

𝐷 𝑥, 𝑦, 𝜎 = 𝐺 𝑥, 𝑦, 𝑘𝜎 − 𝐺 𝑥, 𝑦, 𝜎 𝑓 𝑥, 𝑦

𝐺 𝑥, 𝑦, 𝑘𝜎 − 𝐺 𝑥, 𝑦, 𝜎 ≈ (𝑘 − 1)𝜎2∇2𝐺

A point is select as keypoint if the value is largest or
smallest than its eight neighbors in the current image and
its nine neighbors in the images above and below

Feature Extraction

64

➢ SIFT algorithm

3. Improve the accuracy of the location of the keypoints

a. if 𝐷 ො𝑥 = 𝐷 +
1

2
(∇𝐷)𝑇 ො𝑥, where ∇𝐷 is the differential of D, is low, then it is rejected (eliminated)

b. if
[𝑇𝑟(𝐻)]2

D𝑒𝑡(𝐻)
<

(𝑟+1)2

𝑟
, where r is a threshold and H is the Hessian matrix, is true, then it is

preserved

In function a, the ∇𝐷 is defined as In function b, the Tr(H) and Det(H) are defined as

∇𝐷 =
𝜕𝐷

𝜕𝑥
=

Τ𝜕𝐷 𝜕𝑥
Τ𝜕𝐷 𝜕𝑦
Τ𝜕𝐷 𝜕𝜎

𝐻 =
Τ𝜕2𝐷 𝜕𝑥2 Τ𝜕2𝐷 𝜕𝑥𝜕𝑦

Τ𝜕2𝐷 𝜕𝑦𝜕𝑥 Τ𝜕2𝐷 𝜕𝑦2
=

𝐷𝑥𝑥 𝐷𝑥𝑦
𝐷𝑦𝑥 𝐷𝑦𝑦

𝑇𝑟 𝐻 = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 = 𝛼 + 𝛽

𝐷𝑒𝑡 𝐻 = 𝐷𝑥𝑥𝐷𝑦𝑦− (𝐷𝑥𝑢)
2= 𝛼𝛽

where  and  are the eigenvalues of H with the
largest and smallest magnitude

Feature Extraction

65

➢ SIFT algorithm

3. Improve the accuracy of the location of the keypoints

◆ If 𝐷 ො𝑥 < 0.03 𝑎𝑛𝑑 𝑟 = 10

Feature Extraction

66

➢ SIFT algorithm

4. Compute keypoint orientations

◆ Based on L(x, y), the gradient magnitude M(x, y), and orientation angle θ are computed using

M(x, y) = [(L(x+1, y) - L(x-1, y))2+(L(x, y+1) - L(x, y-1))2]1/2

θ(x, y)= tan-1[(L(x, y+1) - L(x, y-1))/L(x+1, y) - L(x-1, y))]

◆ Then, a histogram of orientations is formed from the gradient orientations of simple points in a
neighborhood of each keypoint

◆ Each sample added to the histogram is weighed by its gradient magnitude, and by a circular
Gaussian function with a standard deviation 1.5 times the scale of the keypoint

Feature Extraction

67

➢ SIFT algorithm

4. Compute keypoint orientations

Link

https://www.itheima.com/news/20210604/113227.html

Feature Extraction

68

➢ SIFT algorithm

4. Compute keypoint orientations

Link

https://www.itheima.com/news/20210604/113227.html

Feature Extraction

69

➢ SIFT algorithm

4. Compute keypoint orientations

Feature Extraction

70

➢ SIFT algorithm

5. Compute keypoint descriptors

◆ Build a descriptor for each keypoint that is both distinctive and invariant to certain variables,
such as lightling and viewpoint. Additionally, the descriptor not only includes the keypoint itself
but also the surrounding pixels that contribute to it

◆ The main idea is to divide the image area around the keypoint into blocks, calculate the
gradient histogram within each block, generate feature vectors, and abstract the image
information

◆ Steps:

1. Taking the feature point as the center, divide its nearby neighborhood into d*d sub-regions (usually
d=4), each sub-region is a square with a side length of 3σ

2. In order to ensure the rotation invariance of the feature point, the coordinate axis is rotated to the
main direction of the key point with the feature point as the center

3. Calculate the gradient of the pixels in the sub-region, perform Gaussian weighting according to
σ=0.5d, and then interpolate to calculate the gradient of each seed point in eight directions

Feature Extraction

71

➢ SIFT algorithm

5. Compute keypoint descriptors

◆ Steps:

1. Taking the feature point as the center, divide its nearby neighborhood into d*d sub-regions (usually
d=4), each sub-region is a square with a side length of 3σ

Link

https://www.itheima.com/news/20210604/113227.html

Feature Extraction

72

➢ SIFT algorithm

5. Compute keypoint descriptors

◆ Steps:

2. In order to ensure the rotation invariance of the feature point, the coordinate axis is rotated to the
main direction of the key point with the feature point as the center

Link

https://www.itheima.com/news/20210604/113227.html

Feature Extraction

73

➢ SIFT algorithm

5. Compute keypoint descriptors

◆ Steps:

3. Calculate the gradient of the pixels in the sub-region, perform Gaussian weighting according to
σ=0.5d, and then interpolate to calculate the gradient of each seed point in eight directions

Link

https://www.itheima.com/news/20210604/113227.html

Feature Extraction

74

➢ SIFT algorithm

5. Compute keypoint descriptors

